

Troubleshooting
performance
issues
Framework NET Genium

Framework NET Genium/ Troubleshooting performance issues

2 / 28

Content

1 Task Manager – CPU control .. 3

1.1 The CPU is permanently busy at 100% ... 4

1.2 CPU usage oscillates around limit 70% and above ... 5

1.2.1 Examples of suboptimal algorithms ... 5

1.3 CPU usage oscillates below 50% .. 5

2 Task Manager – memory check .. 6

2.1 The memory is permanently used at 100% ... 7

2.2 Memory usage is between 60% a 99% .. 8

2.3 Memory usage is below 50% .. 8

3 Pending Windows operating system updates ... 9

4 Debug Diagnostic Tool .. 10

5 My computer – Disk Check .. 11

6 Performance Manager – control of disk operations .. 14

7 RunningQueries.exe ... 16

8 SQL Server – Activity Monitor ... 17

9 SQL Server – Top Queries by Total CPU Time ... 18

10 NET Genium logging and log evaluation ... 22

11 Editing SQL queries and program code ... 23

11.1 Indexes .. 23

11.2 Joins.. 26

11.3 The most common errors in database queries ... 27

11.4 The most common errors when joining .. 27

11.5 SQL Server Database Engine Tuning Advisor – SQL query debugging .. 28

Framework NET Genium/ Troubleshooting performance issues

3 / 28

1 Task Manager – CPU control
Windows Server 2016

Windows Server 2008

Framework NET Genium/ Troubleshooting performance issues

4 / 28

 On the “Details” tab in the “Task Manager”, sort the running processes in descending order according to the

“CPU” column and find out which process is causing an unusual CPU usage.

1.1 The CPU is permanently busy at 100%

 Permanent CPU usage can indicate a web application, console application, or service loop that is caused by an

error in the application source code.

 Permanent CPU load by the “w3wp.exe” process can indicate a cycle of the application pool or an error in one of

the web applications. According to the PID of the “w3wp.exe” process, it is necessary to find the relevant

application pool in IIS and identify the web applications that are served by this application pool.

 Permanent CPU usage by the “firebird.exe” process can indicate either poorly designed SQL queries that

disproportionately use the Firebird database server, or a long-term increasing database server load that must be

addressed by a hardware increase in the number of processor cores.

 Permanent CPU usage by the “sqlserver.exe” process can indicate either poorly designed SQL queries that

disproportionately load the MSSQL database server, or a long-term increasing database server load that must be

addressed by a hardware increase in the number of CPU cores.

Framework NET Genium/ Troubleshooting performance issues

5 / 28

1.2 CPU usage oscillates around limit 70% and above

 Higher CPU utilization by the “w3wp.exe” process may indicate suboptimal algorithms in some of the web

applications. According to the PID of the “w3wp.exe” process, it is necessary to find the relevant application pool

in IIS and identify the web applications that are served by this application pool.

 Higher CPU usage by the “firebird.exe” process can indicate either poorly designed SQL queries that

disproportionately load the Firebird database server, or a long-term increasing database server load that must

be addressed by a hardware increase in the number of CPU cores.

 Higher CPU usage by the “sqlserver.exe” process can indicate either poorly designed SQL queries that

disproportionately use the MSSQL database server, or a long-term increasing database server load that must be

addressed by a hardware increase in the number of CPU cores.

1.2.1 Examples of suboptimal algorithms

• For cycles that call an SQL query in each iteration – the solution is to load all data in bulk before the for cycle

itself, and then index this data into a “Dictionary” object. This procedure is described in detail in the separate

“External functions” manual.

• Generating large files in PDF or XLSX format using “Aspose” libraries – the solution is a hardware increase in

the number of cores.

• High-resolution image processing – the solution is a hardware increase in the number of cores.

 Non-optimal algorithms are often located in one of the external functions, or they can be caused by printing to

printing templates. In both cases, it is important to check the script report (total_worker_time) and the external

functions (total_worker_time), in which the long durations of the scripts or external functions are displayed at

the top of the report.

1.3 CPU usage oscillates below 50%
This condition is normal.

Framework NET Genium/ Troubleshooting performance issues

6 / 28

2 Task Manager – memory check
Windows Server 2016

Windows Server 2008

Framework NET Genium/ Troubleshooting performance issues

7 / 28

 On the “Details” tab in the “Task Manager”, sort the running processes in descending order according to the

“Memory (private working set)” column and find out which process is causing unusual memory usage.

2.1 The memory is permanently used at 100%

 Permanent memory usage by the “w3wp.exe” process may indicate suboptimal algorithms or loading too much

data from the database in one of the web applications. According to the PID of the “w3wp.exe” process, it is

necessary to find the relevant application pool in IIS and identify the web applications that are served by this

application pool. For all these applications, it is necessary to turn on database logging and memory consumption

measurement in the NET Genia settings, see chapter “NET Genium logging and log evaluation”.

 Permanent memory usage by the “firebird.exe” process can indicate either poorly designed SQL queries that

disproportionately load the Firebird database server, or a long-term increasing database server load that must

be addressed by a hardware increase in memory.

 Permanent memory usage by the “sqlserver.exe” process can indicate either poorly designed SQL queries that

disproportionately load the MSSQL database server, or a long-term increasing database server load that must be

addressed by hardware-increasing memory.

 The permanent memory usage of the “sqlserver.exe” process means, among other things, that one of the

instances (usually the default one) does not have a set memory usage limit, which in turn prevents the operating

system and other applications from running properly. Each instance of MSSQL should always have a memory

usage limit set to a safe limit, such as only 80% from the total memory so that the operating system and other

applications have enough space for their operation.

Framework NET Genium/ Troubleshooting performance issues

8 / 28

2.2 Memory usage is between 60% a 99%

 High memory usage by the “w3wp.exe” process may indicate that some of the web applications are loading too

much data from the database. According to the PID of the “w3wp.exe” process, it is necessary to find the

relevant application pool in IIS and identify the web applications that are served by this application pool. For all

these applications, it is necessary to turn on database logging and memory consumption measurement in the

NET Genia settings, see chapter “NET Genium logging and log evaluation”.

 It is a good idea to consider a hardware increase in memory primarily to run more memory-intensive tasks once.

 You must check the MSSQL server instance settings to see if it has a memory usage limit.

2.3 Memory usage is below 50%
This condition is normal.

Framework NET Genium/ Troubleshooting performance issues

9 / 28

3 Pending Windows operating system

updates
 On the application and database server, check the queue for pending updates that need to complete the

installation. These updates can wait in the background and take up memory for the entire server, even though in

Task Manager it appears that the server has enough free memory. Consequently, it does not have the resources

to start and run processes normally, and both common applications on the application server and the database

server collapse. Typically, this condition on the database server is that the MSSQL instance allocates only

200MB, for example, even though it has a much higher limit or no limit on the allocated memory at all.

Framework NET Genium/ Troubleshooting performance issues

10 / 28

4 Debug Diagnostic Tool
 In critical situations, it is necessary to end individual processes in the “Task Manager”. Before this step, it is useful

to create a “memory dump” of the process, which can then be analyzed using the “Debug Diagnostic Tool” and

can detect both looping algorithms and the reason for memory congestion.

 A simplified procedure for working with “memory dumps” is given in the file “Config\Tools\MemoryDumps.txt”

every NET Genium:

1) Download and install Debug Diagnostic Tool v2 Update 2

(https://www.netgenium.com/download/DebugDiagx64.msi)

2) Locate memory dumps (C:\Users\abc\AppData\CrashDumps)

3) Run DebugDiag

4) Default Analysis / CrashHangAnalysis

5) Add Data Files

6) Start Analysis

Framework NET Genium/ Troubleshooting performance issues

11 / 28

5 My computer – Disk Check
 Incoming disk space often means irreversible data loss due to database consistency. The fastest way to free up

disk space is to delete log files or database and file backups.

 The “TDP x-Ray” program is an ideal tool for detailed analysis of disk occupancy by individual directories and

files.

 The log files include both the IIS log files located in the default directory “C:\inetpub.\logs\LogFiles”, so the log

files of specific NET Genium – the “Logs” directory of each NET Genium.

 Database backups are often located in the “Backup” directory of each NET Genium, or in the “E:\BackupServer”.

 By default, IIS has web application traffic logging turned on, which must be turned off as soon as possible. At the

same time, it is important to delete existing logs, which are stored in the “C:\inetpub\logs\LogFiles”. Use the

following procedure to determine the exact location of these logs from the specific IIS settings.

Framework NET Genium/ Troubleshooting performance issues

12 / 28

 Go to the IIS settings and select the highest node of your server/computer (for example “OFFICE” / “TOMAS-

PC”) so that the settings are overwritten to other child nodes, and select “Logging” / “Logging” in the “IIS”

section.

Framework NET Genium/ Troubleshooting performance issues

13 / 28

 Then click “Disable” in the “Actions” panel on the right side of the window. This disables vehicle logging for your

server/computer node.

Framework NET Genium/ Troubleshooting performance issues

14 / 28

6 Performance Manager – control of disk

operations
 On the “Performance” tab in the “Task Manager”, click on the “Open Resource Monitor” link.

Framework NET Genium/ Troubleshooting performance issues

15 / 28

 On the “Disk” tab in the “Resource Monitor”, sort the disk activities in descending order according to the

“Write” column and find out which files – Firebird or MSSQL databases – show unusual disk writes.

Framework NET Genium/ Troubleshooting performance issues

16 / 28

7 RunningQueries.exe
 The “RunningQueries.exe” application is located in the “bin” directory of each NET Genium, and is used to

evaluate currently processed database queries. Running this application creates a “RunningQueries.htm” log file

in the “Logs” directory, and opens this log file at the same time. The queries mentioned in this log file may reduce

the performance of the database server. At the same time, they can be used to identify the database in which

performance issues occur.

Framework NET Genium/ Troubleshooting performance issues

17 / 28

8 SQL Server – Activity Monitor
 Start “SQL Server Management Studio” and click on the “Activity Monitor” icon.

 On the “Recent Expensive Queries” tab, identify the list of recently run demanding database queries. These

queries can also be used to identify the database in which performance issues occur.

Framework NET Genium/ Troubleshooting performance issues

18 / 28

9 SQL Server – Top Queries by Total CPU

Time
 Start “SQL Server Management Studio”, right-click on the top node in “Object Explorer”, and select “Reports

/ Standard Reports / Performance – Top Queries by Total CPU Time”.

Framework NET Genium/ Troubleshooting performance issues

19 / 28

 In this report, identify the list of database queries that are most burdensome on the database server. These

queries can also be used to identify the database in which performance issues occur.

Framework NET Genium/ Troubleshooting performance issues

20 / 28

 Once the database in which the performance issues occur is identified, it is more convenient to run a specific NET

Genium and display the “dm_exec_query_stats (total_worker_time)” report. This report displays an identical list

of database queries that are most burdensome on the database server, and also offers the ability to identify the

control that runs the database query (“…” link).

 SQL Server also offers a “Top Queries by Average CPU Time” report, which has the equivalent in NET Genium

under the “dm_exec_query_stats (average_worker_time)” report.

 In general, it is recommended to browse the reports in the following order:

o dm_exec_query_stats (total_worker_time) – In this report, both database queries that may have a

reasonable query processing time but run too often and database queries that run at reasonable

intervals but have a long processing time come first.

o dm_exec_query_stats (execution_count) – In this report, database queries that run frequently come

first, so it is important to consider “average_worker_time” for these queries.

o dm_exec_query_stats (average_worker_time) – In this report, database queries come first, which have

a long processing time of individual queries.

 A typical incorrectly designed query error that runs very often and does not have an index set on the “ng_url”

column.

Framework NET Genium/ Troubleshooting performance issues

21 / 28

Framework NET Genium/ Troubleshooting performance issues

22 / 28

10 NET Genium logging and log evaluation
 The steps in the previous chapters should be used to identify the database in which the performance issues occur.

 Enable logging in the NET Genium settings by selecting “To database”. If you are dealing with increased

memory usage, also turn on “Measure memory consumption”. A detailed description of NET Genia settings is

given in a separate “NET Genium settings” manual.

 Evaluate logs with reports, and identify view pages, edit forms, database queries, scripts, or external

functions that last the longest. A detailed description of the reports is given in a separate manual “Reports”.

o View pages (average_worker_time)

o View pages (total_worker_time)

o Edit forms (average_worker_time)

o Edit forms (total_worker_time)

o Database queries (average_worker_time)

o Database queries (total_worker_time)

o Scripts (average_worker_time)

o Scripts (total_worker_time)

o External functions (average_worker_time)

o External functions (total_worker_time)

Framework NET Genium/ Troubleshooting performance issues

23 / 28

11 Editing SQL queries and program code
 The most common cause of performance issues are improperly designed database queries or inefficient retrieval

of data from the database. In most cases, you just need to set the indexes on the columns in the database

correctly, or change the way the database tables are joined. It is far more laborious, but just as important, to

change the way data is retrieved from the database so that as few queries as possible are sent to the database,

and always run all queries of a given task with only one connection to the database.

11.1 Indexes

 Indexes are used to speed up database queries, most often to speed up SELECT commands.

Where to set the index

 Enabling/disabling indexes for the "pid" and "pform" columns is performed on the "Administration" tab in the

properties of the edit form.

Framework NET Genium/ Troubleshooting performance issues

24 / 28

 Enabling/disabling indexes for all other database columns is performed on the "Administration" tab in the

properties of the database control.

When and why to set an index

 When dealing with database performance optimization, it is important to follow the basic rule that every

column that occurs in the join conditions on either the left or right side of the condition must be indexed. All

other joins can be turned on/off only after some time of the application, when the database is gradually filled

with data. Over time, the need to set up indexes changes, primarily according to the growing number of records

in each database table, and consequently according to the way this data is read.

o The (ID) column, which is the primary key of the database table, is often used on the left side of the join

condition. This column is indexed automatically.

o A foreign key – the ForeignKey control – is often used on the right side of the join condition. The index

on this column is automatically turned on when the control is created, but it is possible to turn it off

later.

 Gradual indexing on/off must be based on the basic nature of indexes – indexing a given column only makes

sense if the value of the column is evaluated using the operator “equals”, “is defined” or “is not defined”.

 NET Genium logging to the database must be turned on before starting any index tuning.

Framework NET Genium/ Troubleshooting performance issues

25 / 28

Reports

 NET Genium includes reports with an analysis of all indexes in the database, along with a recommendation on

where to turn on the index. In the case of the MSSQL database, it also contains reports with index fragmentation

and index usage statistics. These reports are described in detail in the separate manual "Reports", chapter

"Indexes".

o In the “Joins” report, it is important to look for the occurrence of three “!!!” exclamation marks.

Exclamation points indicate columns used in join conditions that do not have an index enabled. For these

columns, it is important to turn on the index immediately.

o All other entries in the “Joins” report are only informative and point to columns used in database query

conditions for which the index may need to be turned on in the future.

o The “Joins” report does not take into account queries that are used inside the source codes of external

functions or console applications. Therefore, it only contains queries designed in the database query

designer.

How indexes work

 Understanding the principle of indexes is key to properly designing indexes in a database. The following example

in the language C# demonstrates searching for records in a database using a slow sequential traversal, followed

by a fast dictionary search.

o Sequential crawling is analogous to a situation where the database server does not have an index

available and is therefore forced to crawl through all of the database records – one at a time – and try to

find a match based on the search criteria.

o Using a dictionary is analogous to a database server having an index on a given column and looking for all

records that have one particular value stored in that column. For all other search criteria – other than

matching a single specific value – you must use sequential traversal, and therefore cannot use an index.

using System.Data;

using System.Diagnostics;

// SELECT * FROM ng_table WHERE ng_tb IN ('10', '100', '1000', '10000', abc')

string[] search = new string[] { "10", "100", "1000", "10000", "abc" };

DataTable data = new DataTable();

data.Columns.Add("ng_tb");

for (int i = 0; i < 5000000; i++)

{

 data.Rows.Add(i.ToString());

}

Stopwatch sw1 = Stopwatch.StartNew();

foreach (string s in search) Console.WriteLine(s + ": " + Find(data, s));

Console.WriteLine("Sequential browsing: " + sw1.Elapsed);

Console.WriteLine();

Dictionary<string, DataRow> dictionary = new Dictionary<string, DataRow>();

foreach (DataRow row in data.Rows)

{

 dictionary.Add(row["ng_tb"].ToString(), row);

}

Framework NET Genium/ Troubleshooting performance issues

26 / 28

Stopwatch sw2 = Stopwatch.StartNew();

foreach (string s in search) Console.WriteLine(s + ": " + Find(dictionary, s));

Console.WriteLine("Dictionary: " + sw2.Elapsed);

Console.WriteLine();

Console.ReadLine();

private static bool Find(DataTable data, string search)

{

 foreach (DataRow row in data.Rows) if (row["ng_tb"].ToString() == search) return true;

 return false;

}

private static bool Find(Dictionary<string, DataRow> dictionary, string search)

{

 if (dictionary.ContainsKey(search)) true;

 return false;

}

11.2 Joins
LEFT JOIN

• SELECT * FROM ng_invoice LEFT JOIN ng_item ON ng_item.pid = ng_invoice.id

o Load all invoices along with all items

o In the resulting table, invoices are duplicated as many times as each invoice has items

o In the resulting table there are also invoices that have no item (all columns from the joined item

table have a NULL database value stored in the resulting table)

• SELECT * FROM ng_invoice LEFT JOIN ng_item ON ng_item.pid = ng_invoice.id WHERE ng_item.id IS NULL

o Retrieve all invoices that have no item

o In the resulting table, there are only invoices that have no item (all columns from the joined item

table have a NULL database value stored in the resulting table)

• SELECT * FROM ng_invoice LEFT JOIN ng_item ON ng_item.pid = ng_invoice.id WHERE ng_item.ng_price >

100

o Retrieve all invoices that have an item with a price greater than 100

o In the resulting table, invoices are duplicated as many times as each invoice has items with a price

greater than 100

o This query is a classic example of “LEFT JOIN + Condition” where it is beneficial to change the

slower LEFT JOIN to the faster INNER JOIN.

Framework NET Genium/ Troubleshooting performance issues

27 / 28

INNER JOIN

• SELECT * FROM ng_invoice INNER JOIN ng_item ON ng_item.pid = ng_invoice.id

o Retrieve all invoices that have at least one item

o In the resulting table, invoices are duplicated as many times as each invoice has items

o In the resulting table are only invoices that have at least no item

11.3 The most common errors in database queries

 SELECT * – the query should never contain an asterisk as a wildcard for all columns of the source database table,

as well as all columns of all accepted tables, but should always contain a comma-separated list of read columns.

 Loading strings of unlimited length (TextArea, RichTextBox, MultiListBox) causes a significant slowdown in

database query processing, especially on the Firebird database server. These columns should only be loaded

when absolutely necessary.

 Detailed description of how to retrieve data from the database using C# including examples is given in the

separate manual “External functions”, chapter “Reading data from the database”.

11.4 The most common errors when joining

 Failure to follow the basic rule that every column that occurs in join conditions on either the left or right side of

the condition must be indexed.

 Joins defined in the database query designer are often either completely useless because the result does not use

columns retrieved from the accepted database table, uses a slower “LEFT” instead of a faster “INNER” in cases

where “LEFT” is unnecessary, or uses “LEFT” in conjunction with the database condition. query, see the “Reports”

manual, chapter “Database Queries (LEFT JOIN + Condition)”.

 The moment large database tables join together, or join them too much, you need to completely change the

data retrieval logic, and split a costly database query with many joins into more simple database queries.

Framework NET Genium/ Troubleshooting performance issues

28 / 28

11.5 SQL Server Database Engine Tuning Advisor – SQL query debugging

 SQL Server includes a useful tool for debugging database queries – SQL Server Database Engine Tuning Advisor.

A simplified procedure for debugging database queries is provided in the “Config\Tools\TunningQueries.txt”

every NET Genium:

1) Run SQL Server Management Studio

2) Right click on the instance name and select 'Reports / Standard Reports / Performance - Top

Queries by Total CPU Time'

3) Identify top queries with constants in a condition that can be improved with indexes

4) Right click on the background of the report and select 'Print / Excel'

5) Open printed Excel file

6) Create 'netgenium.sql' file and insert top queries using the following syntax:

use netgenium

go

SELECT ...

SELECT ...

7) Run SQL Server Database Engine Tuning Advisor

8) Click 'Start New Session'

9) Select 'File' as a 'Workload' and browse for 'netgenium.sql'

10) Mark 'netgenium' database

11) Click 'Start Analysis'

12) Analyze 'Recommendations' tab

13) Create new indexes as recommended

