
 

Rules for writing 
javascript 
NET Genium Framework 
 



NET Genium Framework/ Rules for writing javascript 

2 / 8 
 

Content 

1 Spaces, tabs and newlines .............................................................................................................. 3 

2 Simple apostrophes .......................................................................................................................... 4 

3 Intermediates ..................................................................................................................................... 5 

4 Buttons and postbacks .................................................................................................................... 7 

5 The display() function and hiding parts of the form ................................................................ 8 

 

  



NET Genium Framework/ Rules for writing javascript 

3 / 8 
 

1 Spaces, tabs and newlines 
 We use spaces between “if” and the left parenthesis, to the left and right of the “=” sign, after the comma as a 

separator for variables or function parameters etc. 

 We use tabs to indent the code from the left margin of a new line. The tab represents two consecutive spaces, 

and is a shortcut key for inserting them into the code in the javascript editor. Each code dive requires one tab – 

two spaces. We do not indent the source code at the first level. 

 Enters – transitions to a new line – we use before the left parenthesis ”{“ and after it, as well as before the right 

parenthesis ”}“ and behind her. 

 

 Bad example 

 

  



NET Genium Framework/ Rules for writing javascript 

4 / 8 
 

2 Simple apostrophes 
 We always use single apostrophes as the default delimiter. Because it is possible to combine javascript code with 

server functions, we always leave double quotes behind server function calls. 

 Server function parameters must often be enclosed in double quotes because the parameter value may contain a 

comma, which is considered a parameter separator by default. Texts inside double quotes are treated as string 

constants and do not replace server functions, only variables. The only exception is the parameters of the “SQL” 

and “SQLARRAY” functions, inside which it is possible to call server functions, even though the parameters of 

these functions are wrapped in double quotes. 

 

 

  



NET Genium Framework/ Rules for writing javascript 

5 / 8 
 

3 Intermediates 
 Javascript code defined in control events must contain a trailing semicolon. 

 

 

 The only exception is the javascript code used in the “ActionButtons” control for the “Save”, “Delete” and “Back” 

buttons. This javascript, on the other hand, must not contain a semicolon at the end, because it is used in the 

condition as a result of the call in the source code of the resulting web page. 

 



NET Genium Framework/ Rules for writing javascript 

6 / 8 
 

 

  



NET Genium Framework/ Rules for writing javascript 

7 / 8 
 

4 Buttons and postbacks 
 Buttons that are set as “Script”, “Print to template”, “Open view page” or “Open edit form” first run the 

javascript code defined in the “Client” field (may or may not be defined), trigger a postback or submit the form 

with the “POST” method (sending all the data filled in the form including sending the information about the 

button that triggered the postback), and on the server side it will run the defined server script. After the script 

completes, the user is returned to the form, until then the form content is hidden, and the text “Please wait...” is 

displayed at the top of the form. 

 

 Clicking the button can be called programmatically using the javascript function “bt_Click(string id)”. A detailed 

description of javascript functions is given in the separate manual “JavaScript Functions”. Only one postback can 

be called from javascript, i.e. clicking only one button at a time. Calling the “bt_Click” function (and thus the 

postback) multiple times in a row is evaluated as an error, and NET Genium will only call the first postback in the 

sequence. 

 The javascript function “form_Update()” is used to update the form, which also uses postback and the hidden 

“btUpdate” button to update all control elements in the form. 

  



NET Genium Framework/ Rules for writing javascript 

8 / 8 
 

5 The display() function and hiding parts of 

the form 
 Most editing forms use hiding parts of the form based on the values that are filled in the controls. So we 

conditionally set the “style.display” property for divs, tables, etc. depending on the values filled in, checked 

checkboxes, etc. Therefore, it is customary to have a javascript function “function display() { }” defined in the 

form, the sample code of which can be obtained in the javascript editor after filling in “display()” in the javascript 

name, or selecting this value from the drop-down list: 

function display() 

{ 

  if (adminMode) return; 

} 

 

display(); 

 The Javascript variable “adminMode” indicates whether the administrator mode is active (if the user in the 

administrator mode uses the button to preview the form or the preview page, the variable “adminMode” has the 

value “false”, even though the administrator mode is active) 

 It is important to call all hiding of the form parts only after the line “if (adminMode) return;”, because then the 

administrator will always see the entire content of the form. When you open the same form after a year, you will 

appreciate it very much. 

 Calling the function “display();” on the last line is important so that the hiding is performed immediately when 

the form is rendered. 

 Place the call to the function “display();” in the OnChange event of the controls whose values affect the hiding of 

the form. 

 Example of a common function “display()”: 

function display() 

{ 

  if (adminMode) return; 

  D1.style.display = jsDisplay(control_GetValue(#ng_status#) == 'New'); 

  D2.style.display = jsDisplay(#ng_show#.checked); 

  D3.style.display = jsDisplay(control_GetValue(#ng_status#) == 'New' && #ng_show#.checked); 

} 

 

display(); 


